

ABBY-net

a cooperation of researchers from Albertan and Bavarian universities

SMARTER, BETTER, CHEAPER? THE POTENTIAL OF AI IN ENERGY SYSTEMS IN TWO EXEMPLARY APPLICATIONS

Sebastian Kolb, Thomas Plankenbühler Friedrich-Alexander University Erlangen-Nürnberg (FAU) sebastian.kolb@fau.de, thomas.plankenbuehler@fau.de

Goals

- Getting an impression of the challenges of a completely revamped (decentralised, flexible) energy sector and how AI could be a part of the answer
- 2. Learning two examples for the incorporation of AI into typical engineering workflows, regarding the underlying
 - Motivation
 - Technical implementation
 - Potential benefits
- 3. Motivate us to add certain AI/ML approaches to our fields' tool-boxes, either by DIY or in cooperation with CS experts

Motivation: Al in Energy Systems

Example #1: Power plant optimisation

Example #2: Model predictive process control

Summary & Concluding remarks

Setting: German energy system

Coal power plants Nuclear Energy plants

Decentralised wind, pv, biomass plants

- Germany attempts to fulfill Paris Agreement Goal in the energy sector by drastically increasing the share of renewable energy and enhanced energy efficiency
- Consequences:
 - Shift towards (many!) small, decentralised power plants
 - Intermittent production requires flexible operation and transmission
 - High demand for energy storage systems
 - Economic pressure esp. on "novel" or less established technologies

Setting: Al in energy systems

This transition is no trivial task. More precisely, we face

- a vast increase in complexity,
- an abundance of data, and
- economic pressure / **fluctuating** commodity prices

Unsurprisingly, AI is considered as (part of) the solution to these challenges.

Motivation

In the following, we will present two examples for our approaches of AI-integration into tasks in the field of energy process engineering:

- 1. Optimisation of traditional/existing facilities
- 2. Process development of emerging energy systems

Motivation: Al in Energy Systems

Example #1: Power plant optimisation

Example #2: Model predictive process control

Summary & Concluding remarks

Optimisation and flexbilisation of biomass power plants

- *Case:* biomass power plants suffer from high economic pressure and expiring subsidies
- Idea: biomass power plant operator wants to move towards cheaper combustibles (like residual forest or industrial wood)
- Constraint: stable, safe and low-emission operation has to be guaranteed at all times

Challenges:

- Low quality feedstock and fluctuating fuels require specific optimal process conditions
- However, process control is slow and trailing

→ Fuel quality (and load) forecasting would allow proactive furnace operation

Approach:

Just-in-time optical analysis of fuel properties prior to combustion (\approx 30 min)

- Installation of a camera system
- Automatic image acquisition and image analysis
- Determination of relevant fuel properties
- Deduction of improved operational points
- Modification of existing PID controllers

Principal steps:

• Camera installation and system coupling (interface to power plant PLC)

 Image processing: Combining image information and physical Approach: Univariate property "fuel quality" (or "mixture rate")

Principal steps (cont.):

• Evaluation: Comparing model predictions with (independent/unused) data

- Implementation: Modifying physical parameters (air supply, combustion grate speed, flue gas recirculation) based on predicted fuel quality
 - \rightarrow "closed-loop" process control in operation for ca. 6 months now
 - ightarrow observable beneficial effect on combustion behaviour
 - ightarrow load prediction reduces (peak load) natural gas burner runtimes

Motivation: Al in Energy Systems

Example #1: Power plant optimisation

Example #2: Model predictive process control

Summary & Concluding remarks

- *Case:* industrial player wants to green ist gas consumption
- Idea: produce methane from renewable electricity (Powerto-Gas)
- Constraint: operation has to be economically feasible

 Challenge: interplay of economic, site-specific, and technological restrictions

All of those restrictions are time-dependent
→need to forecast developments

[Icons from flaticon.com]

- Approach: model predictive process control
 - Cost-minimising controller (MILP)
 - Detailed reactor model (Simulink)
 - Forecasts for prices, demand and CO₂ availability (AI)

• *Example:* Electricity price forecasting with ANN

ANNs offer the **benefits** of

- Considering the non-linear pricing mechanisms,
- Being computationally inexpensive, and
- Dealing with a multitude of determinants, e.g.
 - Day and time
 - Weather
 - Load
 - Commodity prices
 - Power plant availabilities

- Electricity price forecasting with a very simple ANN
- Inputs: electricity prices (-1d, -7d), actual hour, actual day

- Electricity price forecasting with a very simple ANN
- Inputs: electricity prices (-1d, -7d), actual hour, actual day

- Electricity price forecasting with an enhanced ANN
- Inputs: electricity prices and load (-1d, -7d), predicted load, predicted RES, predicted gas price, actual hour, actual day

- Electricity price forecasting with an enhanced ANN
- Inputs: electricity prices and load (-1d, -7d), predicted load, predicted RES, predicted gas price, actual hour, actual day

Motivation: Al in Energy Systems

Example #1: Power plant optimisation

Example #2: Model predictive process control

Summary & Concluding remarks

Take home messages

AI in existing energy infrastructure (Example #1)

- Smarter? Power plant starts acting instead of reacting
- Better? Biomass and gas consumption decreases
- Cheaper? OPEX savings of up to 30%

AI in emerging energy systems (Example #2)

- Smarter? Better? Cheaper? Even more:
- Al is (one of) the prerequisites to operate such systems in an economically feasible way

Al is not the universal remedy for the energy transition. It is **one element** to increase the efficiency of existing infrastructure and to promote emerging energy systems.